Concours Général de Mathématiques «Minko Balkanski»

Solutions

1 August 2023

Solution 1.

The inequality can be rewritten as

$$
a+b+c>a b+b c+a c .
$$

Consider the polynomial $P(x)=(x-a)(x-b)(x-c)$. We know that $P(0)=-1<0$ and $P(1)=a b+b c+a c-(a+b+c)<0$. In particular, none of a, b, c is equal to 1 and an even number among the them are in $(0,1)$. Yet, $a b c=1$ gives that this number is not 0 (otherwise $a=b=c=1$). This concludes the proof. For the converse, note that if P has two roots in the interval $(0,1)$, the third is larger than 1 , and therefore $P(1)<0$.

Solution 2.

Let K and L be the feet of the altitudes from B and C in triangle $A B C$, respectively, and let $A D$ intersect $X Y$ at M. Then, K and L lie on both k_{1} and k_{2}. Therefore, by the radical axis theorem for k_{1}, k_{2} and the circle around $B C K L$ we have that $X Y, K L$ and $B C$ intersect at one point.

At the same time, B, D, C and N form a harmonic quadruple, and, by projecting from A, one may deduce that the same holds for $C^{\prime}, M, B^{\prime}$ and N. However, $\angle M D N=90^{\circ}$, and therefore $D A$ bisects angle $B^{\prime} D C^{\prime}$, as desired.

Solution 3.

Only when $n=1$ or $k \in\{1,2\}$. Let N be the total number of eleventh grade students. Label the conspiring students $1, \ldots, n$ and let $L_{i} \subset\{1, \ldots, N\}$ be the list of student i for $i \in\{1, \ldots, N\}$.

If $n=1$, there is nothing to do.
If $k=1$, it suffices to set $L_{i}=\{i+1\}$ for $i<n$ and $L_{n}=\{1\}$.
If $k=2$, we set $L_{1}=\{2,3\}, L_{2}=\{1,3\}, L_{i}=\{1,2\}$ for $i \in[3, n]$. (Here, we used that $N>k=2$ as otherwise it is impossible for the students to form their lists.)

Assume that $k \geqslant 3$. Further, let $n<k+1$. Then $L_{1} \backslash\{1, \ldots, n\}$ contains some $i \in\{n+1, \ldots, N\}$. But it may happen that i lists 1 , in which case the principal can form the class $\{1, i\}$ and $\{2, \ldots, N\} \backslash\{i\}$. Thus, the students don't have a winning strategy.

Let us assume that, on the contrary, $n \geqslant k+1$, and consider the oriented graph associated to the lists. We may assume that $L_{i}=\{1, \ldots, k\}$ for all $i>n$. We claim that if the associated (directed) graph G has two vertex-disjoint (directed) cycles, we are done. Indeed, these cycles necessarily contain some of the students $1, \ldots, n$ (since others have in-degree 0), so we may put each cycle in a different class and divide the remaining vertices into two groups: those connected to the first cycle via a directed path and the remaining ones.

It therefore remains to show that every directed graph of minimum out-degree at least 3 has two vertex-disjoint cycles. Assume the contrary and let G be a counter-example with minimum number of edges. Notice that any graph of minimum out-degree at least 1 has a cycle. Therefore, if G has a cycle of length 2 , the remainder of G has a cycle, so we obtain a contradiction. Therefore, all cycles have length at least 3 .

We show that for each vertex $x \in G$ there is a cycle C in the in-neighbourhood of x. To begin with, note that if x has zero in-degree, deleting x contradicts the minimality of G. Now, for any edge $y x$, we consider the graph G^{\prime} obtained by deleting the out-edges of y and contracting the edge $y x$. Notice that G^{\prime} does not have two vertex-disjoint cycles, so it must have out-degree less than 3 . In particular, there exists z such that both $z y$ and $z x$ are edges in G. This means that the subgraph of G induced by the in-neighbourhood of x has minimum in-degree at least 1 , so it contains a cycle, as claimed.

Moreover, reversing the edges of G yields another minimal counter-example, so there is also a cycle C^{\prime} contained in the out-neighbourhood of x in G. However, G has no cycles of length 2 , and therefore C and C^{\prime} are disjoint, thus concluding the proof.

