# Concours Général de Mathématiques «Minko Balkanski»

## SOLUTIONS

1 August 2023

### Solution 1.

The inequality can be rewritten as

a+b+c > ab+bc+ac.

Consider the polynomial P(x) = (x-a)(x-b)(x-c). We know that P(0) = -1 < 0 and P(1) = ab + bc + ac - (a+b+c) < 0. In particular, none of a, b, c is equal to 1 and an even number among the them are in (0,1). Yet, abc = 1 gives that this number is not 0 (otherwise a = b = c = 1). This concludes the proof. For the converse, note that if P has two roots in the interval (0,1), the third is larger than 1, and therefore P(1) < 0.

\*

### Solution 2.



Let K and L be the feet of the altitudes from B and C in triangle ABC, respectively, and let AD intersect XY at M. Then, K and L lie on both  $k_1$  and  $k_2$ . Therefore, by the radical axis theorem for  $k_1$ ,  $k_2$  and the circle around BCKL we have that XY, KL and BC intersect at one point.

At the same time, B, D, C and N form a harmonic quadruple, and, by projecting from A, one may deduce that the same holds for C', M, B' and N. However,  $\angle MDN = 90^{\circ}$ , and therefore DA bisects angle B'DC', as desired.

\*

### Solution 3.

Only when n = 1 or  $k \in \{1, 2\}$ . Let N be the total number of eleventh grade students. Label the conspiring students  $1, \ldots, n$  and let  $L_i \subset \{1, \ldots, N\}$  be the list of student i for  $i \in \{1, \ldots, N\}$ .

If n = 1, there is nothing to do.

If k = 1, it suffices to set  $L_i = \{i + 1\}$  for i < n and  $L_n = \{1\}$ .

If k = 2, we set  $L_1 = \{2, 3\}$ ,  $L_2 = \{1, 3\}$ ,  $L_i = \{1, 2\}$  for  $i \in [3, n]$ . (Here, we used that N > k = 2 as otherwise it is impossible for the students to form their lists.)

Assume that  $k \geq 3$ . Further, let n < k + 1. Then  $L_1 \setminus \{1, ..., n\}$  contains some  $i \in \{n + 1, ..., N\}$ . But it may happen that i lists 1, in which case the principal can form the class  $\{1, i\}$  and  $\{2, ..., N\} \setminus \{i\}$ . Thus, the students don't have a winning strategy.

Let us assume that, on the contrary,  $n \ge k+1$ , and consider the oriented graph associated to the lists. We may assume that  $L_i = \{1, \ldots, k\}$  for all i > n. We claim that if the associated (directed) graph G has two vertex-disjoint (directed) cycles, we are done. Indeed, these cycles necessarily contain some of the students  $1, \ldots, n$  (since others have in-degree 0), so we may put each cycle in a different class and divide the remaining vertices into two groups: those connected to the first cycle via a directed path and the remaining ones.

It therefore remains to show that every directed graph of minimum out-degree at least 3 has two vertex-disjoint cycles. Assume the contrary and let G be a counter-example with minimum number of edges. Notice that any graph of minimum out-degree at least 1 has a cycle. Therefore, if G has a cycle of length 2, the remainder of G has a cycle, so we obtain a contradiction. Therefore, all cycles have length at least 3.

We show that for each vertex  $x \in G$  there is a cycle C in the in-neighbourhood of x. To begin with, note that if x has zero in-degree, deleting x contradicts the minimality of G. Now, for any edge yx, we consider the graph G' obtained by deleting the out-edges of y and contracting the edge yx. Notice that G' does not have two vertex-disjoint cycles, so it must have out-degree less than 3. In particular, there exists z such that both zy and zx are edges in G. This means that the subgraph of G induced by the in-neighbourhood of x has minimum in-degree at least 1, so it contains a cycle, as claimed.

Moreover, reversing the edges of G yields another minimal counter-example, so there is also a cycle C' contained in the out-neighbourhood of x in G. However, G has no cycles of length 2, and therefore C and C' are disjoint, thus concluding the proof.

\*