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Solution 1.
The inequality can be rewritten as

a+b+c>ab+bc+ ac.

Consider the polynomial P(z) = (x — a)(xz — b)(x — ¢). We know that P(0) = —1 < 0 and
P(1) = ab+bc+ac— (a+ b+ c¢) < 0. In particular, none of a,b, c is equal to 1 and an
even number among the them are in (0,1). Yet, abc = 1 gives that this number is not 0
(otherwise a = b = ¢ = 1). This concludes the proof. For the converse, note that if P has
two roots in the interval (0,1), the third is larger than 1, and therefore P(1) < 0.

*

Solution 2.

Let K and L be the feet of the altitudes from B and C in triangle ABC, respectively,
and let AD intersect XY at M. Then, K and L lie on both &y and ko. Therefore, by the
radical axis theorem for ki, ko and the circle around BCK L we have that XY, KL and
BC intersect at one point.

At the same time, B, D, C and N form a harmonic quadruple, and, by projecting from
A, one may deduce that the same holds for C’, M, B’ and N. However, ZM DN = 90°,
and therefore DA bisects angle B'DC’, as desired.

*
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Solution 3.
’ Only when n =1 or k € {1, 2}. ‘ Let N be the total number of eleventh grade students.

Label the conspiring students 1,...,n and let L; < {1,..., N} be the list of student i for
ie{l,...,N}

If n = 1, there is nothing to do.

If k =1, it suffices to set L; = {i + 1} for i <n and L, = {1}.

If k =2, weset L1 ={2,3}, Lo = {1,3}, L; = {1,2} for i € [3,n]. (Here, we used that
N > k = 2 as otherwise it is impossible for the students to form their lists.)

Assume that & > 3. Further, let n < k + 1. Then L;\{1,...,n} contains some
i€{n+1,...,N}. But it may happen that ¢ lists 1, in which case the principal can form
the class {1,i} and {2,..., N}\{i}. Thus, the students don’t have a winning strategy.

Let us assume that, on the contrary, n = k + 1, and consider the oriented graph
associated to the lists. We may assume that L; = {1,...,k} for all i > n. We claim that
if the associated (directed) graph G has two vertex-disjoint (directed) cycles, we are done.
Indeed, these cycles necessarily contain some of the students 1,...,n (since others have
in-degree 0), so we may put each cycle in a different class and divide the remaining vertices
into two groups: those connected to the first cycle via a directed path and the remaining
ones.

It therefore remains to show that every directed graph of minimum out-degree at least
3 has two vertex-disjoint cycles. Assume the contrary and let G be a counter-example with
minimum number of edges. Notice that any graph of minimum out-degree at least 1 has a
cycle. Therefore, if G has a cycle of length 2, the remainder of G has a cycle, so we obtain
a contradiction. Therefore, all cycles have length at least 3.

We show that for each vertex x € GG there is a cycle C' in the in-neighbourhood of z.
To begin with, note that if  has zero in-degree, deleting x contradicts the minimality of
G. Now, for any edge yx, we consider the graph G’ obtained by deleting the out-edges of
y and contracting the edge yx. Notice that G’ does not have two vertex-disjoint cycles, so
it must have out-degree less than 3. In particular, there exists z such that both zy and zx
are edges in GG. This means that the subgraph of GG induced by the in-neighbourhood of x
has minimum in-degree at least 1, so it contains a cycle, as claimed.

Moreover, reversing the edges of G yields another minimal counter-example, so there
is also a cycle C' contained in the out-neighbourhood of z in G. However, G has no cycles
of length 2, and therefore C' and C’ are disjoint, thus concluding the proof.
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