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Solution 1.

Suppose without loss of generality that the leading coefficient of P(z) = 3f(x)—7g(x)—
2h(z) is positive (if not, multiply f, g and h by —1). Set Q(x) = f(x) + g(z) — 4h(x) and
R(z) = f(z) + g(z) + h(z). Resolving the system of linear equations leads to

10f(z) = P(x) + Q(x) + 6R(x),
)

10g(z) = —P(z) + Q(z) + 2R(x
10h(x) = —2Q(z) + 2R(x).

)

Thus, one may conclude from the first two equalities that Q(z) and R(z) could not have
leading coefficients with the same sign, while the third equality shows that h(z) is either
always non-positive or always non-negative.

Hence, since h(0) = 0, 0 must also be the unique root of Q(z) and R(x), so f(0)+¢g(0) =
2Q(0) + 8R(0) = 0.
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Solution 2.

Denote by Op and O the centers of ¢; and cs respectively, and by Io the center of the
escribed circle of triangle ABC, opposite to the vertex C. By the Menelaus theorem for
the triangle ABIo and the line through Oy, Oy and C’,

[AC"] _ Ay - 1Oy
|BC'| ~ |O11¢]| - |O2B]

Hence, by the law of sines, iterated 4 times for the triangles AO1C, O11cC, IcO2C
and Oy BC respectively,

|AO1| - [IcO2]  |AO1] |O1C] [1cO2] |02C]

|O11c| - |02B|  |01C| |O11¢]| |02C| |02B|
_ sin ZACO; sin ZC1¢ O sin ZIcCO; sin ZOBO,
~ sin ZO1AC sin Z0,C 1 sin ZO3IoC sin Z05C B

Csin(3-g) s sn(3-g)on(5+3)

sin (5 + $) sin <% — g) Sing  gip (% — g)
)2

(si
_ (sinp) - (1—cos (5 —a))
o) (1—eon (5 )
_ (sinp)-(1—sina) 11— (sina)™?
 (sina)-(1—sinB)  1—(sing)~’
where we used the formula (sin z)? = 1 0025(21‘)
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’ 7
Similar expressions for E,‘a' et €81

74| lead to

|AC'| |BA'| |CB’| 11— (sina)™'1— (sinB)~! 1 — (siny)~!
|BC| |A'C||B'A] 1 —(sinB)~11— (siny) 11— (sina)~!

:17

which suffices to conclude by the inverse theorem of Menelaus.

*
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Solution 3.

Firstly, note that for any two graphs G; € G2 we have s(G1) < s(G2) (we call this pro-
perty monotonicity). Consequently, it suffices to prove the desired inequality for bipartite
G with parts Vi and Vs, [V4| = 2¥1s1 4+ 1 and V5] = 2F2s5 4 1 for two integers k1, ko > 0.
Indeed, if V; is not of this form, i.e. [Vi] € [2F1s; + 2,217 1s] for an integer k1 > 0, we
remove |Vi| — (2¥s1 + 1) arbitrarily chosen elements of V4 and similarly for Va; we also
delete V\(V1 U V3).

We argue by induction on N = min{ky, k2} that s(G) = N+1, which implies the desired
inequality by monotonicity. For N = 0, we have s(G) > 1, since G contains at least two
edges. Indeed, at least one edge vivs connects V; and Vs, and at least one connects Vi\{v;}
and Vo\{ve}. Assume that the induction hypothesis is verified for N = Ny — 1. Let F be
a good family of orderings of V of size r = s(G). Fix a 0 € F and let

t= min {|a*1([1,j]) AVA =20l £ 1 or [0 Y([L, §]) A Va| = 2P Lsy + 1}.
1<V

Roughly speaking, t is the first index such that o=!([1,#]) contains more than half of
Vi and less than half of V5 or vice versa. Without loss of generality, let | 1([1,]) N
Vi| = 2= 1sy 4 1. Set o7 ([1,t]) n Vi = Uy and Va\o'([1,t]) = Us. Up to removing
|Ug| — (2F27 sy + 1) > 2F255 41 — 2F2— 15y — (2%~ 155 4 1) > 0 elements from Us, we get
Uy and U, satisfying the induction hypothesis for Ny — 1. Thus,

| F\{o} =r—1=s(G|U1 vUsz]) = Nog—1,
since o doesn’t separate any couple of edges of G(|U; v Usz]). This concludes the proof.

*
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