Concours Général de Mathématiques «Minko Balkanski»

Solutions

27 August 2022

Solution 1.

Suppose without loss of generality that the leading coefficient of $P(x)=3 f(x)-7 g(x)-$ $2 h(x)$ is positive (if not, multiply f, g and h by -1). Set $Q(x)=f(x)+g(x)-4 h(x)$ and $R(x)=f(x)+g(x)+h(x)$. Resolving the system of linear equations leads to

$$
\begin{aligned}
& 10 f(x)=P(x)+Q(x)+6 R(x), \\
& 10 g(x)=-P(x)+Q(x)+2 R(x), \\
& 10 h(x)=\quad-2 Q(x)+2 R(x) .
\end{aligned}
$$

Thus, one may conclude from the first two equalities that $Q(x)$ and $R(x)$ could not have leading coefficients with the same sign, while the third equality shows that $h(x)$ is either always non-positive or always non-negative.

Hence, since $h(0)=0,0$ must also be the unique root of $Q(x)$ and $R(x)$, so $f(0)+g(0)=$ $2 Q(0)+8 R(0)=0$.

Solution 2.

Denote by O_{1} and O_{2} the centers of c_{1} and c_{2} respectively, and by I_{C} the center of the escribed circle of triangle $A B C$, opposite to the vertex C. By the Menelaus theorem for the triangle $A B I_{C}$ and the line through O_{1}, O_{2} and C^{\prime},

$$
\frac{\left|A C^{\prime}\right|}{\left|B C^{\prime}\right|}=\frac{\left|A O_{1}\right| \cdot\left|I_{C} O_{2}\right|}{\left|O_{1} I_{C}\right| \cdot\left|O_{2} B\right|}
$$

Hence, by the law of sines, iterated 4 times for the triangles $A O_{1} C, O_{1} I_{C} C, I_{C} O_{2} C$ and $O_{2} B C$ respectively,

$$
\begin{aligned}
\frac{\left|A O_{1}\right| \cdot\left|I_{C} O_{2}\right|}{\left|O_{1} I_{C}\right| \cdot\left|O_{2} B\right|} & =\frac{\left|A O_{1}\right|}{\left|O_{1} C\right|} \frac{\left|O_{1} C\right|}{\left|O_{1} I_{C}\right|} \frac{\left|I_{C} O_{2}\right|}{\left|O_{2} C\right|} \frac{\left|O_{2} C\right|}{\left|O_{2} B\right|} \\
& =\frac{\sin \angle A C O_{1}}{\sin \angle O_{1} A C} \frac{\sin \angle C I_{C} O_{1}}{\sin \angle O_{1} C I_{C}} \frac{\sin \angle I_{C} C O_{2}}{\sin \angle O_{2} I_{C} C} \frac{\sin \angle C B O_{2}}{\sin \angle O_{2} C B} \\
& =\frac{\sin \left(\frac{\pi}{4}-\frac{\alpha}{2}\right)}{\sin \left(\frac{\pi}{2}+\frac{\alpha}{2}\right)} \frac{\sin \frac{\beta}{2}}{\sin \left(\frac{\pi}{4}-\frac{\beta}{2}\right)} \frac{\sin \left(\frac{\pi}{4}-\frac{\alpha}{2}\right)}{\sin \frac{\alpha}{2}} \frac{\sin \left(\frac{\pi}{2}+\frac{\beta}{2}\right)}{\sin \left(\frac{\pi}{4}-\frac{\beta}{2}\right)} \\
& =\frac{(\sin \beta) \cdot\left(\sin \left(\frac{\pi}{4}-\frac{\alpha}{2}\right)\right)^{2}}{(\sin \alpha) \cdot\left(\sin \left(\frac{\pi}{4}-\frac{\beta}{2}\right)\right)^{2}} \\
& =\frac{(\sin \beta) \cdot\left(1-\cos \left(\frac{\pi}{2}-\alpha\right)\right)}{(\sin \alpha) \cdot\left(1-\cos \left(\frac{\pi}{2}-\beta\right)\right)} \\
& =\frac{(\sin \beta) \cdot(1-\sin \alpha)}{(\sin \alpha) \cdot(1-\sin \beta)}=\frac{1-(\sin \alpha)^{-1}}{1-(\sin \beta)^{-1}},
\end{aligned}
$$

where we used the formula $(\sin x)^{2}=\frac{1-\cos (2 x)}{2}$.

Similar expressions for $\frac{\left|B A^{\prime}\right|}{\left|A^{\prime} C\right|}$ et $\frac{\left|C B^{\prime}\right|}{\left|B^{\prime} A\right|}$ lead to

$$
\frac{\left|A C^{\prime}\right|}{\left|B C^{\prime}\right|} \left\lvert\, \frac{B A^{\prime} \mid}{\left|A^{\prime} C\right|} \frac{\left|C B^{\prime}\right|}{\left|B^{\prime} A\right|}=\frac{1-(\sin \alpha)^{-1}}{1-(\sin \beta)^{-1}} \frac{1-(\sin \beta)^{-1}}{1-(\sin \gamma)^{-1}} \frac{1-(\sin \gamma)^{-1}}{1-(\sin \alpha)^{-1}}=1\right.,
$$

which suffices to conclude by the inverse theorem of Menelaus.

Solution 3.

Firstly, note that for any two graphs $G_{1} \subseteq G_{2}$ we have $s\left(G_{1}\right) \leqslant s\left(G_{2}\right)$ (we call this property monotonicity). Consequently, it suffices to prove the desired inequality for bipartite G with parts V_{1} and $V_{2},\left|V_{1}\right|=2^{k_{1}} s_{1}+1$ and $\left|V_{2}\right|=2^{k_{2}} s_{2}+1$ for two integers $k_{1}, k_{2} \geqslant 0$. Indeed, if V_{1} is not of this form, i.e. $\left|V_{1}\right| \in\left[2^{k_{1}} s_{1}+2,2^{k_{1}+1} s_{1}\right]$ for an integer $k_{1} \geqslant 0$, we remove $\left|V_{1}\right|-\left(2^{k_{1}} s_{1}+1\right)$ arbitrarily chosen elements of V_{1} and similarly for V_{2}; we also delete $V \backslash\left(V_{1} \cup V_{2}\right)$.

We argue by induction on $N=\min \left\{k_{1}, k_{2}\right\}$ that $s(G) \geqslant N+1$, which implies the desired inequality by monotonicity. For $N=0$, we have $s(G) \geqslant 1$, since G contains at least two edges. Indeed, at least one edge $v_{1} v_{2}$ connects V_{1} and V_{2}, and at least one connects $V_{1} \backslash\left\{v_{1}\right\}$ and $V_{2} \backslash\left\{v_{2}\right\}$. Assume that the induction hypothesis is verified for $N=N_{0}-1$. Let \mathcal{F} be a good family of orderings of V of size $r=s(G)$. Fix a $\sigma \in \mathcal{F}$ and let

$$
t=\min _{1 \leqslant j \leqslant|V|}\left\{\left|\sigma^{-1}([1, j]) \cap V_{1}\right|=2^{k_{1}-1} s_{1}+1 \text { or }\left|\sigma^{-1}([1, j]) \cap V_{2}\right|=2^{k_{2}-1} s_{2}+1\right\} .
$$

Roughly speaking, t is the first index such that $\sigma^{-1}([1, t])$ contains more than half of V_{1} and less than half of V_{2} or vice versa. Without loss of generality, let $\mid \sigma^{-1}([1, t]) \cap$ $V_{1} \mid=2^{k_{1}-1} s_{1}+1$. Set $\sigma^{-1}([1, t]) \cap V_{1}=U_{1}$ and $V_{2} \backslash \sigma^{-1}([1, t])=U_{2}$. Up to removing $\left|U_{2}\right|-\left(2^{k_{2}-1} s_{2}+1\right) \geqslant 2^{k_{2}} s_{2}+1-2^{k_{2}-1} s_{2}-\left(2^{k_{2}-1} s_{2}+1\right) \geqslant 0$ elements from U_{2}, we get U_{1} and U_{2} satisfying the induction hypothesis for $N_{0}-1$. Thus,

$$
|\mathcal{F} \backslash\{\sigma\}|=r-1 \geqslant s\left(G\left[U_{1} \cup U_{2}\right]\right) \geqslant N_{0}-1,
$$

since σ doesn't separate any couple of edges of $G\left(\left[U_{1} \cup U_{2}\right]\right)$. This concludes the proof.

