## Concours Général de Mathétmatiques "Minko Balkanski"

## Solutions

17 August 2020

## Solution 1.

Let $O=F C \cap P_{a} P_{b}$. We have that:

- $\angle H H_{a}^{\prime} H_{a}=\angle H P_{a} H_{a}=\angle H P_{a} F$.
- $\angle H H_{a}^{\prime} H_{b}^{\prime}=\angle H C H_{b}^{\prime}=\angle H C P_{b}$.
- $\angle H H_{b} H_{a}=\angle H F H_{a}=\angle H F P_{a}$.
- $\angle H H_{b} H_{b}^{\prime}=\angle H P_{b} H_{b}^{\prime}=\angle H P_{b} C$.

Therefore, the sum of angles $H_{a} H_{a}^{\prime} H_{b}^{\prime}$ and $H_{a} H_{b} H_{b}^{\prime}$ is indeed equal to $180^{\circ}-\angle P_{b} H C+$ $\angle P_{b} H F$. We prove that $\angle P_{b} H C=\angle P_{b} H F$.

Remark that the lines $\left(B A, B P_{b}, B O, B C\right)$ form a harmonic quadruple. Projecting on the line $C D$ gives that $(D, F, O, C)$ is a harmonic quadruple. Now, define $F^{\prime}$ to be the point on the line $C D$, for which $\angle O H F^{\prime}=O H C$ and $F^{\prime} \neq C$. Then, $O H$ is an internal bisector of $\angle F H C$ and therefore $F^{\prime} O / O C=F H / H C$. Moreover, $\angle O H D=90^{\circ}$ so $H D$ is an external bisector of $\angle F H C$. Therefore $F^{\prime} D / D C=F^{\prime} D / D C=F^{\prime} O / O C$. We conclude that $\left(D, F^{\prime}, O, C\right)$ is a harmonic quadruple, so $F^{\prime} \equiv F$. This completes the proof.


## Solution 2.

a. We prove the statement by induction. It therefore suffices to notice that

$$
\frac{1}{2^{n}+1}+\cdots+\frac{1}{2^{n+1}} \geqslant \underbrace{\frac{1}{2^{n+1}}+\cdots+\frac{1}{2^{n+1}}}_{2^{n}}=\frac{1}{2} .
$$

b. $\lim 1 / u_{n}=\lim 1 / v_{n}=0$. Notice that by induction both $u_{n}$ and $v_{n}$ are positive and therefore increasing. This implies the existence of the limits.

Let us assume for a contradiction that $u_{n} \rightarrow c<\infty$. Then $u_{n} \geqslant c / 2$ for all $n \geqslant n_{0}$ for some $n_{0}$ sufficiently large. Therefore, $v_{n+1} \leqslant v_{n}+\frac{4040}{c}$ for $n \geqslant n_{0}$, so, by induction

$$
v_{n} \leqslant v_{n_{0}}+\left(n-n_{0}\right) \frac{4040}{c}
$$

Plugging this in the recurrence relation for $u_{n}$, we get that for $n \geqslant n_{0}$

$$
u_{n} \geqslant u_{n_{0}}+\sum_{i=0}^{n-n_{0}} \frac{8}{v_{n_{0}}+i \frac{4040}{c}} \geqslant \frac{c}{505} \sum_{i=N}^{N+n-n_{0}} \frac{1}{i}
$$

where $N=\left\lceil c v_{n_{0}} / 4040\right\rceil$.
Denote $H_{n}=\sum_{i=1}^{n} \frac{1}{i}$. From a. we have that $H_{n} \rightarrow \infty$. Hence

$$
u_{n} \geqslant \frac{c}{505}\left(H_{N+n-n_{0}}-H_{N-1}\right) \xrightarrow{n \rightarrow \infty} \infty .
$$

This contradicts the hypothesis $c<\infty$ and concludes the proof that $\lim u_{n}=\infty$. The divergence of $v_{n}$ can be proved similarly or using that, by induction $v_{n} \geqslant u_{n}$.
Remark. The curious reader may study $\lim u_{n} / \sqrt{n}$ when 2020 is replaced by 8 in the statement of the problem.

## Solution 3.

$n \geqslant k$. Observe that the order in which the devil places tokens does not matter. It is easily checked that if Thomas places $k$ consecutive tokens, the devil will keep adding tokens to their left to infinity.

Let $A$ be the set of (integers occupied by the) tokens of Thomas and $B$ the devil's tokens. Assume that $B$ is infinite. Without loss of generality we may assume that $B$ contains infinitely many negative integers.

Observation 1. Assume that for some $z \in B$ at some point in during step 1. the devil places a token on $z-k$ or $z-k+1$, so that a token on $z$ is already present. Then a token either on $z-k$ or on $z-(k-1)$ is placed after the one on $z$, so the token on $z$ is also placed during step 1 . Therefore, the tokens on $z+k$ and $z+k-1$ are placed before $z$.

Necessarily, there exists $b \in B$ with $b<\min A-k^{2}$, on which the token is placed in step 1. By Observation 1 the tokens on $b+k<\min A$ and $b+k-1<\min A$ are placed during step 1. before the one on $b$. Iterating this argument we obtain that the tokens on $X_{0}=\left\{b+k^{2}-k+1, \ldots, b+k^{2}\right\}$ are all placed in step 1 . Notice that max $X_{0}<\min A$ by our choice of $b$. Without loss of generality we assume that $b=k-k^{2}$.

For $i \geqslant 0$ let $X_{i}=\{k i+1, \ldots, k(i+1)\}$ and let $Y_{i}$ be the set of integers $x \in X_{i}$ on which tokens were placed in step 1 . In other words, $X_{i}$ partition the positive integers into blocks of $k$ consecutive ones and $Y_{i}$ are the integers in block $i$ where tokens are placed during step 1. In particular, we have that $Y_{0}=X_{0}$.

Observation 2. If for some $i$ and $y$ we have that $y \in Y_{i-1}$ and $y+k \notin Y_{i}$, then $y+k \in A$.
Proof. By definition of $Y_{i-1}$ we have that a token was placed on $y+k$ before $y$. By Observation 1 applied to $y+k$ we get that if $y+k \notin A$, then the token on $y+k$ was placed in step 1., contradicting $y+k \notin Y_{i}$.

We consider two possibilities. Assume first that $B$ contains a finite number of positive integers. Then, setting $i_{0}=\max (A \cup B)$ it is clear that $Y_{i_{0}}=\varnothing$, as no tokens were ever placed in $X_{i_{0}}$. If, on the contrary, $B$ contains an integer $b^{\prime}>\max A+k^{2}+k$ on which the token is placed in step 2., then as above all tokens on $\max A+1, \ldots, \max A+2 k$ are placed in step 2. Then, setting $i_{0}=\lceil(\max A) / k\rceil$, we have $Y_{i_{0}}=\varnothing$, as all tokens in $X_{i_{0}}$ are placed in step 2.

Recalling that $\left|Y_{0}\right|=k$ and $\left|Y_{i_{0}}\right|=0$, we get from Observation 2 that $A$ contains at least one integer in each residue class modulo $k$, so $|A| \geqslant k$.

