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Solution 1.

a. Let n � 101. We begin by giving a lower bound for the minimal time of evacuation

and then construct an algorithm attaining it. Consider �oor number i. The number of

people waiting for the elevator on a higher �oor is initially
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Thus, the number of times the elevator has to go up to take people from �oors i � 1,
i� 2 . . . up to 101 is R
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V
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To obtain a lower bound for the time the elevator spends moving between the �oors, we

sum (2) from i � 0 to i � 100 and multiply by four seconds (two for going up and two for

going down). In order to bound the time spent waiting on �oors, notice that the elevator

has to wait at least 8
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seconds on the �oor number i.

We will give an example meeting both bounds, so having a total evacuation time
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seconds or 79 hours, 52 minutes and 52 seconds. To achieve this, one can perform the

following procedure.

• Bring down 5 people from a �oor as long as possible (in any order). After this on

�oor i the number of people left is the remainder of i modulo 5.

• Bring down the remaining people 5 by 5 by pairing successive non-empty �oors

together � 5k � 6 with 5k � 4, 5k � 3 with 5k � 2 for 0 ¤ k ¤ 19.

• Bring down the only person on the �rst �oor.

The elevator stops the minimal number of times,

R
i

5

V
, on �oor i in order to collect all the

people. In order to treat the travelling time, we prove that that for each �oor i ¤ 100 the

distance between �oors i and i � 1 is run the minimal number of times. Notice that for

each such link between �oors the number of ascends is equal to the number of descents,

as the elevator starts and �nishes at �oor 0. Moreover, each link is travelled downwards

exactly the number of times in (2) (check this separately for �oor numbers with di�erent

remainders modulo 5).

b. For n � 100, we repeat a similar algorithm, whose correctness is proved by the

same method (the veri�cation for the travelling time is slightly di�erent). The modi�ed

algorithm is as follows.

• Bring down 5 people from a �oor as long as possible (in any order). After this on

�oor i the number of people left is the remainder of i modulo 5.
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• Bring down the remaining people 5 by 5 by pairing non-empty �oors together � 5k�4
with 5k � 1, 5k � 3 with 5k � 2 for 0 ¤ k ¤ 19.

The time is 2 hours, 20 minutes and 12 seconds less.

�

Solution 2.
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First notice that =O1CO2 � =O1DO2 � 180� � =O1BO2 � 180� � =O1AO2. From

this observation we get that O1, O2, A, C and D lie on a common circle. Let the line DF
intersect this circle at L, di�erent from D, and also let the line CF intersect this circle at

K, di�erent from C. We have that O1L and O2K are diameters in k and thus intersect at

I. We conclude from Pascal's theorem for the circle k and the triplets of points D,K,O1

and C,L,O2.

�

Solution 3.

a. First notice that constant functions are solutions. Assume that the function is

non-constant. Plugging n � 1 in the relation, one obtains

@m, k P N, fpm� 1q|fpmq � fp1qfpkq.

We consider two cases.

Case 1. Assume that fp1q ¡ 1. Then the statement above gives

@m, k, s P N, fpm� 1q � fp1qfpsq � fp1qfpkq.

As f is not constant, it follows that for s, k such that fpsq � fpkq, fpm� 1q � fp1qfpsq �
fp1qfpkq and in particular f is bounded. Then for any N large enough, fpm � Nkq �
fpNq � max f . But the divisibility condition for n � N and any m, k gives in this case

that maxpfq � fpmq. In consequence, f must be a constant function, which was already

treated.

Case 2. Assume that fp1q � 1. Let a � mintn P N|fpnq ¡ 1u. The divisibility condition

for m � k � 1 and n � a � 1 gives that fpaq � 2. Now, fpa � 1q � fpaq � fp1q � 3
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and if a ¥ 3, we also have fpa � 1q � fp2q � fpa � 1q � 2. This imposes fpa � 1q � 1,
contradiction with the assumption that f is non-decreasing. So a � 2 and fp2q � 2. An

easy induction is su�cient to conclude that in this case we obtain the identity function ,

which is indeed a solution of the problem.

b. Setting k � 1 in the divisibility condition, we obtain that

fpm� nq � fpmq � fpnq. (3)

By induction one obtains fpnq ¤ n for all n. We consider two cases.

Case 1. Assume that fp2q � 1. Let a � mintn P N|fpnq ¡ 1u ¡ 2, as above. As in a.

one obtains that fpaq � 2. Then, as in a., by induction fpnq � 1 for all n not divisible by

a and fpnq � 2 for all n divisible by a. Indeed, by (3) we have fpnq � fpaq � fpn� aq and
fpnq � fpαq � fpn � αq for α   a with a � n � α and the two sums can be computed by

induction hypothesis.

Note that if fplaq � 1 for some l, then fpnq � 1 for all n ¥ la, since fpmaq �
fpaq � fppm � 1qaq � 3 by induction and we already know that fpmaq � 2, so f is

equivalent to the constant function 1 and we are done. But the only other possibility is

to have fpnq � 2 if a � n and 1 otherwise. We claim that this is possible if and only if

a �
±
pi for distinct primes pi. To see that those are solutions, note that a � m � nk

implies that for all i we have m and n are either both divisible or both not divisible by pi.
Thus, fpm� nkq � 2 implies that fpmq � fpnq and the desired divisibility holds. Hence,

fpnq � 2 if a � n and 1 otherwise with a �
±
pi for pi distinct primes

is a solution. Assume that p2 � a for some prime p. Then 2 � fpa � pa{pq2q � fpaq �
fpa{pqfp2q � 3 � a contradiction.

Case 2. Assume that fp2q � 2. Let nk � mintn ¡ nk�1|fpnkq � 1u with n1 � 1.
Note that if for some k we have nk � nk�1 � 1, then fpnq � 1 for all n ¥ nk�1, which

is equivalent to the constant 1. Assume that nk � nk�1 ¥ 2 for all k. If nk � nk�1 � 2
for some k, then fpnk � 2q � 1 � fpnkq, fpnk � 1q � 2 � fpnk � 1q and fpnk � 2q �
fppnk � 2q � 22q � fppnk � 1q � 1q divides 5 and 3, so nk�1 � nk � 2. By induction the

sequence alternates between 1 and 2. In Case 1. we already saw that the function equal

to 2 on even integers and 1 on odd ones is a solution. We claim that it is not possible to

have the opposite parity for all su�ciently large n. Indeed, (3) is contradicted by taking

m � n� 1 su�ciently large.

Hence, we can assume that nk � nk�1 ¥ 3 for all k and aim for a contradiction. Let

mk � mintm P NY t8u|m ¡ nk, fpmq   m� nk � 1u

and note that fpmq   m�nk�1 for allm ¥ mk and fpmq � m�nk�1 for all nk ¤ m   mk

by (3). Further set bk � mk � nk ¥ 3 (since nk�1� nk ¥ 3). We also assume that f is not

the identity function, so m1 is �nite.

We next prove by induction that bk�1   bk (and nk�1 and mk�1 are �nite). Assume

that this is true for all k   k0. By Bertrand's postulate
1 there exists a prime bk0   p   2bk0 ,

where bk0 � mk0 � nk0 . But by (3) and the de�nitions of mk0 and bk0 we have

fpp� nk0 � 1q � fpmk0 � 1q � fpp� bk0q � bk0 � pp� bk0q � p,

since p � bk0   bk0 ¤ b1   m1. Since fpmq   m � nk0 � 1 for m ¥ mk0 , we have

fpp � nk0 � 1q � 1, so nk0�1 ¤ p. Assume for a contradiction that mk0�1 ¡ nk0�1 � bk0 .

1Other facts on the distribution of primes can be used, but we focus on this one, since it is among the

most widely-known.
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Fix some m ¤ bk0 and let nk0 ¤ α   mk0 and β ¤ b1 be such that nk �m � α� β2. This

is indeed possible, since bk0 �nk0�1�mbk0
¤ 2bk0 , so that 2

Qb
bk0 � nk0�1 �mbk0

U
¤ bk0 .

Hence,

m� 1 � fpnk0�1 �mq|fpαq � fpβq2 � nk0�1 � nk0 �m� 1,

so nk0�1 � nk0   2bk0 is divisible by all integers smaller than bk0 . This is not possible for
bk0 ¥ 3 (e.g. using Bertrand's postulate). Hence, bk form a decreasing sequence which

contradicts bk ¥ 3. Thus, there are no other solutions.

�
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