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Solution 1.

a. Let n = 101. We begin by giving a lower bound for the minimal time of evacuation
and then construct an algorithm attaining it. Consider floor number 7. The number of
people waiting for the elevator on a higher floor is initially
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D R T 2 ‘ (1)

s=i+1

Thus, the number of times the elevator has to go up to take people from floors ¢ + 1,

1+ 2... up to 101 is
101 —4)(102 + 4
(101 — 4)(102 + 4) ' @)
10

To obtain a lower bound for the time the elevator spends moving between the floors, we
sum (2) from i = 0 to ¢ = 100 and multiply by four seconds (two for going up and two for
going down). In order to bound the time spent waiting on floors, notice that the elevator

i
has to wait at least 8 £ seconds on the floor number ¢.
We will give an example meeting both bounds, so having a total evacuation time

100

4; [(101 —ii(()lOQ—i—i)] +8:§ [ﬂ P

seconds or 79 hours, 52 minutes and 52 seconds. To achieve this, one can perform the
following procedure.

e Bring down 5 people from a floor as long as possible (in any order). After this on
floor ¢ the number of people left is the remainder of ¢ modulo 5.

e Bring down the remaining people 5 by 5 by pairing successive non-empty floors
together — 5k + 6 with 5k + 4, 5k + 3 with 5k + 2 for 0 < k < 19.

e Bring down the only person on the first floor.

The elevator stops the minimal number of times, [;], on floor 7 in order to collect all the

people. In order to treat the travelling time, we prove that that for each floor ¢ < 100 the
distance between floors ¢ and 7 + 1 is run the minimal number of times. Notice that for
each such link between floors the number of ascends is equal to the number of descents,
as the elevator starts and finishes at floor 0. Moreover, each link is travelled downwards
exactly the number of times in (2) (check this separately for floor numbers with different
remainders modulo 5).

b. For n = 100, we repeat a similar algorithm, whose correctness is proved by the
same method (the verification for the travelling time is slightly different). The modified
algorithm is as follows.

e Bring down 5 people from a floor as long as possible (in any order). After this on
floor ¢ the number of people left is the remainder of ¢ modulo 5.

Concours "Minko Balkanski" 1 2019



e Bring down the remaining people 5 by 5 by pairing non-empty floors together — 5k +4
with 5k + 1, 5k + 3 with 5k + 2 for 0 < k£ < 19.

The time is 2 hours, 20 minutes and 12 seconds less.

Solution 2.

First notice that £Z0:C0O9 = Z01 DOy = 180° — Z01 B0y = 180° — Z0O1AO5. From
this observation we get that Oq, O2, A, C and D lie on a common circle. Let the line DF
intersect this circle at L, different from D, and also let the line C'F intersect this circle at
K, different from C'. We have that O1L and O3 K are diameters in k and thus intersect at

I. We conclude from Pascal’s theorem for the circle k& and the triplets of points D, K, O
and C, L, Os.

Solution 3.

a. First notice that |constant functions‘ are solutions. Assume that the function is
non-constant. Plugging n = 1 in the relation, one obtains

vm, ke N, f(m + 1)|f(m) + f(1)7*),

We consider two cases.
Case 1. Assume that f(1) > 1. Then the statement above gives

Vm, ks €N, f(m+1) | f(1)7®) = f(1)7H),

As f is not constant, it follows that for s, k such that f(s) # f(k), f(m + 1) | f(1)I) —
f(1)7®) and in particular f is bounded. Then for any N large enough, f(m + N¥) =
f(N) = max f. But the divisibility condition for n = N and any m, k gives in this case
that max(f) | f(m). In consequence, f must be a constant function, which was already
treated.

Case 2. Assume that f(1) = 1. Let a = min{n € N|f(n) > 1}. The divisibility condition
for m = k =1 and n = a — 1 gives that f(a) = 2. Now, f(a+1) | f(a) + f(1) =3
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and if @ > 3, we also have f(a +1) | f(2) + f(a — 1) = 2. This imposes f(a + 1) = 1,
contradiction with the assumption that f is non-decreasing. So a = 2 and f(2) = 2. An

easy induction is sufficient to conclude that in this case we obtain the ’identity function
which is indeed a solution of the problem.

b. Setting k = 1 in the divisibility condition, we obtain that

fm+mn) [ f(m)+ f(n). (3)

By induction one obtains f(n) < n for all n. We consider two cases.

Case 1. Assume that f(2) = 1. Let a = min{n € N|f(n) > 1} > 2, as above. As in a.
one obtains that f(a) = 2. Then, as in a., by induction f(n) = 1 for all n not divisible by
a and f(n) | 2 for all n divisible by a. Indeed, by (3) we have f(n) | f(a) + f(n —a) and
f(n) | fla)+ f(n—a) for a < a with a } n — « and the two sums can be computed by
induction hypothesis.

Note that if f(la) = 1 for some [, then f(n) = 1 for all n > la, since f(ma) |
f(a) + f((m — 1)a) = 3 by induction and we already know that f(ma) | 2, so f is
equivalent to the ’constant function 1 ‘ and we are done. But the only other possibility is
to have f(n) = 2 if a | n and 1 otherwise. We claim that this is possible if and only if
a = []p; for distinct primes p;. To see that those are solutions, note that a | m + n*
implies that for all ¢ we have m and n are either both divisible or both not divisible by p;.
Thus, f(m + n*) = 2 implies that f(m) = f(n) and the desired divisibility holds. Hence,

i

’f(n) =2 if a | n and 1 otherwise with a = [ [ p; for p; distinct primes‘

is a solution. Assume that p? | a for some prime p. Then 2 = f(a + (a/p)?) = f(a) +
f(a/p)!@ =3 — a contradiction.
Case 2. Assume that f(2) = 2. Let ny = min{n > ng_1|f(ng) = 1} with ny = 1.

Note that if for some k we have ny — ni_1 = 1, then f(n) =1 for all n > ng_1, which
is equivalent to the constant 1. Assume that ny —ng_1 = 2 for all k. If ngy —np_1 = 2
for some k, then f(ny —2) =1 = f(ng), f(ng — 1) =2 = f(np + 1) and f(ng +2) =
f((ng —2) +22) = f((ng + 1) + 1) divides 5 and 3, 50 41 — ng = 2. By induction the
sequence alternates between 1 and 2. In Case 1. we already saw that the function equal
to 2 on even integers and 1 on odd ones is a solution. We claim that it is not possible to
have the opposite parity for all sufficiently large n. Indeed, (3) is contradicted by taking
m = n + 1 sufficiently large.

Hence, we can assume that ny — ni_1 = 3 for all k£ and aim for a contradiction. Let

my = min{m € N u {o}|m > ng, f(m) <m —ny + 1}

and note that f(m) < m—nyg+1for allm > my and f(m) = m—ng+1for all ny < m < my
by (3). Further set by = my —ng > 3 (since ngy1 —ng = 3). We also assume that f is not
the identity function, so my is finite.

We next prove by induction that bxy1 < by (and ngyq and myyq are finite). Assume
that this is true for all k < ko. By Bertrand’s postulate! there exists a prime by, < p < 2by,,
where by, = my, — ng,. But by (3) and the definitions of my, and by, we have

f(p+nko_1) | f(mko_l)"'f(p_bko)=bk0+(p_bko)=pa

since p — by, < by, < b1 < my. Since f(m) < m — ng, + 1 for m = my,, we have
flp+nkg, —1) =1, s0 ngy+1 < p. Assume for a contradiction that mg 11 > ngy+1 + big-

!Other facts on the distribution of primes can be used, but we focus on this one, since it is among the
most widely-known.
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Fix some m < by, and let ng, < a < my, and 8 < by be such that ni + m = o + (2. This

is indeed possible, since by, + g1 — My, < 2by,, so that 2 [\/bko + N1 — mbko] < by, -
Hence,
mA41= f(nrge1 +m)|f(@) + £(B)% = npgs1 — gy +m + 1,

SO Npy4+1 — Nky < 2by, is divisible by all integers smaller than by,. This is not possible for
by, = 3 (e.g. using Bertrand’s postulate). Hence, by form a decreasing sequence which
contradicts by = 3. Thus, there are no other solutions.
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