# Concours Général de Mathétmatiques "Minko Balkanski" 

Solutions

3 June 2018

## Solution 1.

$(x, y) \in\{(0,0),(8,6),(-8,-6)\}$. The equation can be rewritten as

$$
x\left(x^{2}-37\right)=y^{3} .
$$

Note that $x$ and $x^{2}-37$ are either coprime so both cubes or only share the common divisor 37. In the latter case in fact $37^{2} \mid x$, so we set $x=37^{2} u$, $y=37 v$ in order to obtain $u\left(37^{3} u^{2}-1\right)=v^{3}$. Since the two factors are coprime, they need to be both cubes. Then, as $37^{3} u^{2}$ and $37^{3} u^{2}-1$ are both cubes, they are necessarily equal to 0 and $\pm 1$, which leads to $u=0$ and so $x=y=0$.

In the former case $x$ and $x^{2}-37$ are both cubes, so $x^{2}-37$ and $x^{2}$ also are. This is only possible for $x= \pm 8$, so $y= \pm 6$ respectively.

## Solution 2.

By the radical axes theorem for the circles, circumscribed around $\triangle B C^{\prime} C^{\prime \prime}$, $\triangle C B^{\prime} B^{\prime \prime}$ and $B C B^{\prime} C^{\prime}$ (which is inscribed, because $\angle B B^{\prime} C=\angle B C^{\prime} C=$ $90^{\circ}$ ), we obtain that $A_{1} A_{2}$ passes through $B C^{\prime} \cap C B^{\prime}=A$. Moreover, the orthocentre $H_{a}$ of triangle $B^{\prime} C^{\prime} A$ has equal powers with respect to the circles, circumscribed around $\triangle B C^{\prime} C^{\prime \prime}$ and $\triangle C B^{\prime} B^{\prime \prime}$, because $B^{\prime} C^{\prime \prime} B^{\prime \prime} C^{\prime}$ is inscribed, so $H_{a} B^{\prime} . H_{a} B^{\prime \prime}=H_{a} C^{\prime} . H_{a} C^{\prime \prime}$. It follows that $H_{a}$ is a second point on the radical axis of the two circles, circumscribed around $\triangle B C^{\prime} C^{\prime \prime}$ and $\triangle C B^{\prime} B^{\prime \prime}$, so this axis is exactly the line $A H_{a}$. An easy angle chasing allows to verify that $A H_{a}$ passes through the centre of the circumscribed circle of $\triangle A B C$ and by an analogous reasoning for the vertices $B$ and $C$ we obtain that this is the common point of $A_{1} A_{2}, B_{1} B_{2}$ and $C_{1} C_{2}$.


## Solution 3.

$2^{n}-1$. Finiteness will follow from our bound, but it can also be proved directly with much less effort (by induction, then assuming the contrary and considering a long interval between two tokens). Note first that the dynamics is reversible, so one can go back to the starting point from every configuration reached by reverting each step. Let $l(n)$ be the largest integer (possibly infinite) on which a token can be placed.

We first show $l(n) \leqslant 2^{n}-1$ by induction. The base $n=1$ is trivial. Let $X \subset \mathbb{N} \backslash\{0\}$ be a configuration reachable with $n$ tokens (we assume
without loss of generality that they are all placed on the table). Denote $X=\left\{x_{1}^{0}, \ldots, x_{n}^{0}\right\}$ with $x_{1}^{0}<\ldots<x_{n}^{0}, X_{0}=X \cup\{0\}$ and set $x_{0}^{0}=0$. By reversibility there exists $i$ such that $x_{i+1}^{0}-x_{i}^{0}=1$ (otherwise there is no possible move). Then $X_{1}=X \backslash\left\{x_{i+1}^{0}\right\}$ is also reachable. We denote $X_{1}=\left\{0, x_{1}^{1}, \ldots, x_{n-1}^{1}\right\}$ still ordered and extend this notation to the $X_{k}$ to come. More generally, if there are $k$ tokens in Laure's pocket and the other $n-k$ have been placed on $X_{k} \backslash\{0\}$, by reversibility it is possible to remove some token from the board first - the one on $x_{i+1}^{k}$, say. But then it is possible to reach $x_{i+1}^{k}$ without moving any of the tokens on the table using the $k$ tokens from the pocket. By definition this is possible only if $x_{i+1}^{k}-x_{i}^{k} \leqslant l(k)+1$. We then set $X_{k+1}=X_{k} \backslash\left\{x_{i+1}^{k}\right\}$. We continue in the same spirit up to $X_{n}=\{0\}$.

Now notice that

$$
\sum_{j}\left(x_{j+1}^{k}-x_{j}^{k}\right) \leqslant \sum_{j}\left(x_{j+1}^{k+1}-x_{j}^{k+1}\right)+l(k)+1,
$$

so

$$
\max X=x_{n}=\sum\left(x_{j+1}^{0}-x_{j}^{0}\right) \leqslant \sum(l(k)+1)=\sum 2^{k}=2^{n}-1 .
$$

Hence, $l(n) \leqslant 2^{n}-1$. It is not hard to follow the equalities in the proof above to see that the case of equality is indeed reached (only) for $X=$ $\left\{2^{n-1}, 2^{n-1}+2^{n-2}, \ldots, 2^{n}-1\right\}$ and the strategy above read backwards gives a (recursive) way to reach $X$. More precisely, Laure uses $n-1$ tokens to place the $n$-th on $2^{n-1}$ and removes them afterwards as they were placed. She then uses $n-2$ tokens starting at $2^{n-1}$ to put the last one on $2^{n-1}+2^{n-2}$, she removes the $n-2$ and so on. Thus, $l(n)=2^{n}-1$.

Remark. Let us metion that the problem first appeared in Chung-DiaconisGraham, 2001.

## Solution 4.

For two closed intervals $I$ and $J$ of $[0,1]$ we write $I \longrightarrow J$ if $f(I) \supset J$ and say that $f(I)$ covers $J$. We know that $f$ acts on the set $\left\{x_{3}, f\left(x_{3}\right), f\left(f\left(x_{3}\right)\right)\right\}$ as a cycle of length 3 . Up to replacing $x_{3}$ by $f\left(x_{3}\right)$ or $f\left(f\left(x_{3}\right)\right)$ we may assume that either $x_{3}<f\left(x_{3}\right)<f\left(f\left(x_{3}\right)\right)$ or $x_{3}>f\left(x_{3}\right)>f\left(f\left(x_{3}\right)\right)$. We shall assume that the former chain of inequalities holds and this is without loss of generality, as we may replace $f$ by $\tilde{f}$ defined by $\tilde{f}(x)=1-f(1-x)$ (one still has that $1-x_{3}$ is of exact period 3). Under this assumption, setting $I_{1}:=\left[x_{3}, f\left(x_{3}\right)\right]$ and $I_{2}:=\left[f\left(x_{3}\right), f\left(f\left(x_{3}\right)\right)\right]$, one gets $I_{1} \longrightarrow I_{2}$ and $I_{2} \longrightarrow I_{1} \cup I_{2}$. We shall need the following Lemma.

Lemma. Let I and J be two closed intervals such that $I \longrightarrow J$. Then there exists a closed interval $I^{\prime} \subseteq I$ such that $f\left(I^{\prime}\right)=J$.

Proof. Let $J=[a, b]$. Let $x_{0}, y_{0} \in I$ be such that $f\left(x_{0}\right)=a$ and $f\left(y_{0}\right)=$ $b$. For definiteness we assume that $x_{0}<y_{0}$, the other case being treated identically. Set $x=\max \left\{x^{\prime} \in I, y_{0} \geqslant x^{\prime} \geqslant x_{0}, f\left(x^{\prime}\right)=a\right\}$ and $y=\min \left\{y^{\prime} \in\right.$ $\left.I, y_{0} \geqslant y^{\prime} \geqslant x, f\left(y^{\prime}\right)=y\right\}$, which exist by continuity. We claim that $I^{\prime}=$ $[x, y]$ does satisfy $f\left(I^{\prime}\right)=J$. Indeed, $f\left(I^{\prime}\right) \supset J$ by the intermediate value theorem. Moreover, if there exists $y>x^{\prime}>x$ with $f\left(x^{\prime}\right)<a$, then by the intermediate value theorem there exists $y_{0}>y>x^{\prime \prime}>x^{\prime}$ such that $f\left(x^{\prime \prime}\right)=a$, which contradicts the definition of $x$. One proves similarly that it is not possible to have $f\left(y^{\prime}\right)>b$ for any $x<y^{\prime}<y$, which completes the proof of the Lemma.

We will now use this Lemma to prove conclude the solution. Recall that $I_{1} \longrightarrow I_{2}, I_{2} \longrightarrow I_{2}$ and $I_{2} \longrightarrow I_{1}$. By the intermediate values theorem we know that $f(x)-x$ must attain the value 0 , so there exists a fixed point of $f$. Fix $n \geqslant 2$. We have $I_{1} \longrightarrow I_{2} \longrightarrow I_{2} \longrightarrow \ldots \longrightarrow I_{2} \longrightarrow I_{1}$, where we have $n$ coverings. Thus, by simple induction using the Lemma, we see that there exists a sequence $\left(J_{k}\right)_{0 \leqslant k \leqslant n}$ of closed intervals such that $J_{0}=I_{1}, J_{n} \subseteq I_{1}$, $f\left(J_{n}\right)=J_{n-1}$ and for all $k<n$ we have $J_{k} \subseteq I_{2}$ and $f\left(J_{k}\right)=J_{k-1}$. This implies that $f^{\circ n}\left(J_{n}\right)=J_{0}=I_{1} \supseteq J_{n}$, so $f^{\circ n}$ has a fixed point in the interval $J_{n}$ (we already observed that a continuous function from a closed interval to itself has a fixed point). Moreover, $\forall k \in\{1,2, \ldots, n-1\}, f^{\circ k}\left(J_{n}\right) \subseteq I_{2}$, which is disjoint with $I_{1}$, so the fixed point of $f^{\circ n}$ is a periodic point of exact period $n$ for $f$, which concludes the proof.

Remark. The result is a particular case of a theorem of Sharkovsky.

